Artikel

11.5: Ungkapan, Persamaan dan Ketaksamaan


  • 11.5.1: Menilai Ungkapan Algebra
    Terdapat banyak formula yang ditemui dalam kelas statistik dan nilai setiap pemboleh ubah akan diberikan. Menjadi tugas anda untuk menilai ekspresi dengan teliti setelah memasukkan setiap nilai yang diberikan ke dalam formula. Untuk berjaya, anda tidak perlu tergesa-gesa dalam prosesnya dan anda perlu mengetahui urutan operasi dan menggunakan tanda kurung apabila perlu.
  • 11.5.2: Ketaksamaan dan Titik Tengah
    Ketidaksamaan adalah komponen penting dalam statistik. Salah satu penggunaan ketaksamaan yang sangat penting adalah ketika kita telah menemui min atau perkadaran dari sampel dan ingin menuliskan ketidaksamaan yang memberikan di mana rata-rata atau perkadaran populasi cenderung berbohong. Aplikasi lain adalah kebarangkalian di mana kita ingin mencari kebarangkalian nilai lebih daripada nombor, kurang daripada nombor, atau antara dua nombor.
  • 11.5.3: Selesaikan Persamaan dengan Akar
    Akar kuasa dua sering berlaku dalam kursus statistik, terutama ketika berhadapan dengan sisihan piawai dan ukuran sampel. Di bahagian ini kita akan belajar bagaimana menyelesaikan pemboleh ubah apabila pemboleh ubah itu terletak di bawah tanda punca kuasa dua. Perkara utama yang perlu diingat adalah bahawa segi empat sama akar kuasa adalah apa yang terdapat di dalamnya. Dengan kata lain, kuasa dua punca kuasa dua membatalkan punca kuasa dua.
  • 11.5.4: Menyelesaikan Persamaan Linear dalam Satu Pembolehubah
    Ini adalah tugas biasa dalam aljabar untuk menyelesaikan persamaan bagi pemboleh ubah. Tujuannya adalah untuk mendapatkan pemboleh ubah di satu sisi persamaan dengan sendirinya dan agar persamaan yang lain hanya menjadi nombor. Proses ini akan melibatkan pengenalpastian operasi yang dilakukan pada pemboleh ubah dan menerapkan operasi terbalik ke kedua sisi persamaan. Ini akan diuruskan mengikut urutan operasi yang sebaliknya.

Unit: Ungkapan, persamaan dan ketaksamaan

Dalam pelajaran ini, anda akan diperkenalkan dengan notasi algebra dan belajar bagaimana menilai dan menggantikan ungkapan.

Mengumpulkan seperti istilah

Dalam pelajaran ini, anda akan belajar mengumpulkan bersama seperti istilah dan memanipulasi ungkapan linear.

Keagihan dan pengembangan

Dalam pelajaran ini, anda akan menggunakan harta distributif untuk mengembangkan kurungan dengan ungkapan linear.

Memfaktorkan ungkapan

Dalam pelajaran ini, anda akan belajar bagaimana memfaktorkan ungkapan linear asas.

Membentuk dan meneroka persamaan

Dalam pelajaran ini, anda akan mempelajari konsep persamaan dan menggunakan model untuk membentuk persamaan.

Meneroka persamaan

Dalam pelajaran ini anda akan membentuk persamaan dan meneroka bagaimana persamaan dipelihara.

Ketidaksamaan

Dalam pelajaran ini anda akan menggunakan model untuk membentuk ketaksamaan.

Ketidaksamaan selanjutnya

Dalam pelajaran ini anda akan belajar bagaimana membentuk ketaksamaan yang berkaitan dengan persamaan yang diketahui.

Ungkapan perimeter

Dalam pelajaran ini anda akan belajar bagaimana membentuk ungkapan menggunakan panjang algebra dan melukis bentuk yang diberi ungkapan untuk perimeter.

Ketaksamaan perimeter

Dalam pelajaran ini anda akan belajar bagaimana mewujudkan ketaksamaan dari ungkapan perimeter.

Strategi membilang

Dalam pelajaran ini, anda akan membuat strategi mengira secara algebra untuk mengulang corak.

Corak pokok yang tumbuh

Dalam pelajaran ini, anda akan belajar bagaimana membuat generalisasi strategi pengiraan secara algebra untuk corak berulang yang berbeza.


Menyelesaikan persamaan

Persamaan adalah pernyataan yang menyatakan bahawa nilai dua ungkapan matematik adalah sama. Ini ditunjukkan oleh tanda yang sama antara kedua ungkapan tersebut.

Apabila kita mempunyai persamaan dengan pemboleh ubah yang tidak diketahui, ia disebut Persamaan Algebra

Untuk menyelesaikan persamaan Algebra, anda mesti mendapatkan pemboleh ubah itu sendiri di satu sisi persamaan untuk menyelesaikan pemboleh ubah yang tidak diketahui. Ini dapat dilakukan dengan melakukan langkah-langkah berikut bergantung pada jenis persamaan:

  • Menambah atau mengurangkan nilai yang sama dari kedua sisi
  • Hapuskan pecahan dengan Mendarab setiap istilah dengan bahagian bawah
  • Bagilah setiap istilah dengan nilai bukan sifar yang sama
  • Gabungkan Syarat Seperti
  • Pemfaktoran
  • Mengembang
  • Mengecam corak
  • Terapkan fungsi pada kedua-dua belah pihak

Sebaik sahaja anda menyelesaikan pemboleh ubah, pastikan anda memeriksa penyelesaian anda dalam masalah asal untuk memastikan ia sama dengan nilai yang sama pada kedua sisi persamaan.

3x - 7 = 11

Dalam persamaan ini, anda perlu mendapatkan X dengan sendirinya, untuk melakukan ini, kita perlu melakukan operasi penolakan terbalik dengan menambahkan tujuh pada kedua sisi persamaan.

3x - 7 + 7 = 11 + 7

Ini akan memberi kita persamaan:

Ini kerana apabila anda menambah 7 ke an - 7 mereka saling membatalkan di sebelah kiri persamaan. maka 11+ 7 = 18

Sekarang untuk menyelesaikan 3x = 18, anda mesti membahagikan setiap sisi dengan tiga kerana anda mahu melakukan operasi terbalik dari persamaan asal yang didarabkan dengan tiga.

apabila kita membahagi dengan tiga ia akan meninggalkan kita dengan x = 6.

Sekarang kita tahu x = 6, sekarang kita mesti memasukkannya semula ke dalam persamaan untuk memeriksa penyelesaian kita. Kami akan menggantikan pemboleh ubah x dengan nombor enam dalam persamaan.

Ini bermaksud penyelesaian betul kerana kedua-dua belah pihak sama dengan nilai yang sama


Pelajaran 7 - 12: Menyelesaikan Persamaan Bentuk px + q = r dan p (x + q) = r dan Masalah yang Menyebabkan Persamaan tersebut

Pelajar anda mempelajari kaedah yang berkesan untuk menyelesaikan persamaan dan berusaha memahami mengapa kaedah ini berfungsi. Kadang kala untuk menyelesaikan persamaan, kita hanya dapat memikirkan nombor yang akan menjadikan persamaan itu benar. Sebagai contoh, penyelesaian untuk 12 & tolak c = 10 adalah 2, kerana kita tahu bahawa 12 & tolak 2 = 10. Untuk persamaan yang lebih rumit yang mungkin merangkumi perpuluhan, pecahan, dan nombor negatif, penyelesaiannya mungkin tidak begitu jelas.

Kaedah penting untuk menyelesaikan persamaan adalah melakukan perkara yang sama pada setiap pihak. Sebagai contoh, mari tunjukkan bagaimana kita dapat menyelesaikan - 4 (x & minus 1) = 20 dengan melakukan perkara yang sama pada setiap sisi.

Alat lain yang berguna untuk menyelesaikan persamaan adalah menggunakan harta pengagihan. Dalam contoh di atas, bukannya mengalikan setiap sisi dengan - 1 4, anda boleh menggunakan harta distributif ke - 4 (x & minus 1) dan menggantinya dengan - 4 x + 4. Penyelesaian anda akan kelihatan seperti ini:

Inilah tugas untuk dicuba dengan pelajar anda:

Elena memilih nombor, menambah 45 padanya, dan kemudian mendarabkan dengan 1/2. Hasilnya adalah 29. Elena mengatakan bahawa anda dapat mencari nombornya dengan menyelesaikan persamaan 29 = 1/2 (x + 45).

Cari nombor Elena & rsquos. Terangkan langkah-langkah yang anda gunakan.

Nombor Elena & rsquos adalah 13. Terdapat banyak cara yang berbeza untuk menyelesaikan persamaannya. Berikut adalah satu contoh:


Matematik Piawaian Teras Biasa

Kluster: Amalan matematik

Standard: Bentukkan hujah yang bernas dan kritikkan alasan orang lain. Pelajar yang mahir secara matematik memahami dan menggunakan andaian, definisi, dan hasil yang dinyatakan sebelumnya dalam membina hujah. Mereka membuat sangkaan dan membina perkembangan penyataan yang logik untuk meneroka kebenaran dugaan mereka. Mereka dapat menganalisis situasi dengan memecahkannya ke dalam beberapa kes, dan dapat mengenali dan menggunakan contoh. Mereka membenarkan kesimpulan mereka, menyampaikannya kepada orang lain, dan menanggapi hujah orang lain. Mereka beralasan secara induktif mengenai data, membuat argumen yang masuk akal yang mempertimbangkan konteks dari mana data itu muncul. Pelajar yang mahir secara matematik juga dapat membandingkan keberkesanan dua hujah yang masuk akal, membezakan logik atau penaakulan yang betul dari yang cacat, dan - jika terdapat kekurangan dalam argumen - terangkan apa itu. Pelajar sekolah rendah dapat membina hujah menggunakan rujukan konkrit seperti objek, gambar, rajah, dan tindakan. Hujah-hujah seperti itu dapat masuk akal dan betul, walaupun tidak digeneralisasikan atau dibuat formal hingga ke peringkat kemudian. Kemudian, pelajar belajar untuk menentukan domain yang mana argumen berlaku. Pelajar di semua kelas boleh mendengar atau membaca hujah orang lain, memutuskan sama ada mereka masuk akal, dan mengemukakan soalan yang berguna untuk menjelaskan atau memperbaiki hujah.


Contohnya

Soalan

Hasil dua bilangan bulat negatif berturut-turut ialah ( teks <1 122> ). Cari dua integer.

Berikan pemboleh ubah kepada kuantiti yang tidak diketahui

Biarkan bilangan bulat pertama menjadi (n ) dan biarkan bilangan bulat kedua (n + 1 )

Sediakan persamaan

Kembangkan dan selesaikan untuk (n )

bermula ^ <2> + n & amp = teks <1 122> ^ <2> + n & # 8211 teks <1 122> & amp = 0 (n + 34) (n & # 8211 33) & amp = 0 oleh itu n & amp = -34 teks n & amp = 33 akhir

Cari tanda bilangan bulat

Diberikan bahawa kedua-dua bilangan bulat mesti negatif.

bermula Oleh itu n & amp = -34 n + 1 & amp = -34 + 1 & amp = -33 end

Tulis jawapan terakhir

Dua bilangan bulat negatif berturut-turut adalah (- teks <34> ) dan (- teks <33> ).

[Atribusi dan Lesen]

Artikel ini dilesenkan di bawah lesen CC BY-NC-SA 4.0.

Perhatikan bahawa video dalam pelajaran ini disediakan di bawah Lesen YouTube Piawai.


Algebra 1

Grafik menunjukkan sistem ketaksamaan untuk senario di mana x adalah bilangan pihak yang disahkan dalam lawatan dan y adalah jumlah salinan jadual perjalanan yang diperlukan. Kekangan mana yang boleh menjadi sebahagian daripada sistem ini

Selesaikan ketidaksamaan sebatian. Tulis penyelesaiannya dalam notasi selang. Grafkan penyelesaian anda pada garis nombor. 1. 2 (3x + 1) p - 1 atau 4 (p - 1) +

Katie membeli hadiah cenderamata untuk keluarganya yang besar di rumah. Dia mahu membeli semua orang sama ada gantungan kunci atau magnet. Magnet dijual dengan harga 50 sen setiap satu dan rantai kunci berharga $ 1 setiap satu. Dia mesti membeli sekurang-kurangnya 24 hadiah

Fizik

Untuk litar mana-mana bilangan persamaan bebas yang mengandungi emf, rintangan, dan arus sama dengan bilangan cabang. kenapa? Satu-satunya jenis litar yang bercabang adalah selari. Tetapi boleh ada litar elektrik dengan a

garis nombor di bawah -5 -4 -3 -2 -1 0 1 2 3 4 5 Antara ungkapan di bawah yang manakah mewakili jarak antara -4 dan 5 pada garis nombor? [] = simbol nilai mutlak A. [-4 + 5] B. [4-5] C. [- 4-5] d. [- 5 - (- 4)] Saya percaya ia adalah D, kerana

1. Tuliskan 6 x 10 ^ 4 dalam bentuk piawai. A. 600 B. 6,000 C. 60,000 D. 600,000 2. tuliskan 2.3 x 10 ^ 3 dalam bentuk piawai. A. 230 B. 2,300 C. 23,000 D. 230,000 3. Tulis 968,000 dalam notasi saintifik. A. 968 x 10 ^ 3 B. 9.68 x 10 ^ 2 C. 9.68 x

Aljabar

Sekiranya empat kali bilangan tertentu meningkat 6 sama dengan 94, berapakah bilangannya? Sekiranya x mewakili nombor, maka persamaan berikut yang manakah dapat digunakan untuk menyelesaikan masalah? 4x + 6 = 94 atau 4 (x + 6) = 94

1. Jumlah nombor dan 2 adalah 6 kurang daripada dua kali nombor itu. 2. Taman segi empat mempunyai lebar 8 kaki kurang dari dua kali panjangnya. Cari dimensi jika perimeternya ialah 20 kaki. 4. Enam kali bilangannya kurang daripada 72.

Pelajaran 7: Menyelesaikan Persamaan dengan Dua Langkah Matematik 6 B Unit 5: Membuat grafik, Persamaan, dan Ketaksamaan amalan 1.b 2.c 3.b 4.b 5.c Pelajaran 7: Menyelesaikan Persamaan dengan Dua Langkah Matematik 6 B Unit 5 : Grafik, Persamaan, dan Ketaksamaan

Aljabar

Mengapa tanda ketidaksamaan berubah apabila kedua-dua belah darinya digandakan atau dibahagi dengan nombor negatif? Adakah ini berlaku dengan persamaan? Mengapa atau mengapa tidak? Tuliskan ketidaksamaan yang dapat diselesaikan oleh rakan sekelas anda. Dalam ketaksamaan anda, gunakan kedua-duanya

Bolehkah seseorang menolong saya dengan ujian unit ini Pelajaran 14: Persamaan dan Ketaksamaan Ujian Unit Matematik 7 Unit 4: Persamaan dan Ketaksamaan

Algebra 2

Saya sedang mengerjakan Pelajaran 6: Persamaan dan Ketaksamaan Nilai Mutlak Algebra 2 Unit 2: Ungkapan, Persamaan, dan Ketaksamaan dan merasa yakin dengan beberapa jawapan pertama saya, tetapi di luar itu saya hilang. Bolehkah saya mendapat bantuan? ** = yang


Ungkapan, Persamaan, dan Ketaksamaan

Semua teka-teki anda dapat diakses dari halaman 'Teka-teki Saya', yang boleh anda akses menggunakan bar navigasi di bahagian atas semasa anda log masuk.

Pastikan anda log masuk menggunakan alamat e-mel yang sama dengan yang anda gunakan semasa membuat teka-teki anda.

Terdapat butang 'Buat Cetak' di kiri atas teka-teki anda yang akan membolehkan anda mendaftar untuk merancang atau membeli satu teka-teki.

Setelah dibayar, butang itu akan berubah menjadi butang 'Pratonton + Terbitkan' yang akan meletakkan teka-teki anda dalam format yang dapat dicetak atau diselesaikan secara dalam talian.

Setelah menerbitkan teka-teki anda, anda boleh mengklik ikon cetak atau menggunakan fungsi cetak penyemak imbas & # 8217s anda.

Mula-mula pastikan anda & # 8217 telah menerbitkan teka-teki anda. Lihat 'Bagaimana saya mencetak?' bahagian di atas untuk maklumat lebih lanjut.

99% masalah percetakan lain ada kaitan dengan tetapan pencetak. Daripada cuba bermain-main dengan tetapan pencetak, yang boleh memakan masa dan mengecewakan, ada beberapa penyelesaian yang boleh anda cuba.

Anda boleh mencetak dari penyemak imbas lain, kerana penyemak imbas yang berbeza mempunyai tetapan cetak lalai yang berbeza. Sebagai alternatif, anda boleh mencuba menyimpan sebagai PDF (di sebelah ikon cetak) dan mencetaknya.

Kami melabur untuk membina sejumlah ciri premium yang tidak dapat ditawarkan oleh laman web percuma: kemampuan untuk menambahkan kata-kata pada teka-teki anda secara automatik atau manual, penyuntingan teka-teki simpan sambil berjalan, kemampuan untuk mengakses teka-teki anda dari komputer mana pun, dan antara muka yang tidak rapi dan bebas iklan, kemampuan rakan dan rakan untuk menyelesaikan teka-teki anda dalam talian, dan respons pantas terhadap masalah yang dilaporkan.

Crossword Hobbyist adalah perkhidmatan harga terendah yang kami dapati yang menyediakan ciri-ciri ini, dan direka untuk orang yang tidak berpuas hati dengan apa yang dapat disediakan oleh laman web percuma.

Kami mohon maaf kerana anda menyangka Crossword Hobbyist adalah percuma, yang pasti mengecewakan.

Kami terus berusaha memberikan pengalaman pengguna yang jelas dan berterus terang, dan kami tidak cuba menyembunyikan harganya: di halaman tempat anda membuat teka-teki, harga disenaraikan dalam gambaran keseluruhan di kiri atas (sebelum anda log masuk ), di bawah butang 'Buat Cetak' (setelah anda log masuk), di FAQ di bawah grid, dan juga dalam lawatan.

Sayangnya, kami mempunyai kawalan terhad terhadap bagaimana kami muncul di Google dan di laman web lain, jadi jika mereka menunjukkan Crossword Hobbyist ketika seseorang mencari laman web percuma, kami tidak dapat melakukan apa-apa.

Ia mengatakan tidak ada akaun dengan e-mel saya.

Periksa dahulu sama ada anda menggunakan alamat e-mel yang berbeza untuk membuat akaun anda. E-mel log masuk anda adalah alamat e-mel di mana anda menerima e-mel selamat datang dari kami.

Sebagai alternatif, mungkin terdapat kesalahan ketik dalam e-mel anda semasa anda membuat akaun. Sekiranya ada, laporkan masalah di bawah ini dan berikan nama dan empat digit terakhir pada kad yang anda gunakan semasa anda mendaftar. Kami akan menggunakan maklumat ini untuk melacak akaun anda.

Saya diminta membayar kali kedua.

Sekiranya anda adalah ahli Crossword Hobbyist dan masih diminta untuk pembayaran, maka anda mungkin telah membuat akaun kedua secara tidak sengaja.

Akaun berbayar anda akan mempunyai alamat e-mel tempat anda menerima e-mel yang mengesahkan langganan anda.

Sekiranya anda tidak pernah menerima e-mel seperti itu, atau masih tidak dapat menemui akaun berbayar anda, laporkan masalah di bawah dan berikan nama dan empat digit terakhir pada kad yang anda gunakan semasa mendaftar. Kami akan menggunakan maklumat ini untuk melacak akaun anda.

Untuk keselamatan, manusia tidak dapat melihat atau menetapkan semula kata laluan anda, jadi baca maklumat di bawah dengan teliti.

Sekiranya anda belum mendapat e-mel tetapan semula kata laluan, periksa folder spam anda, pastikan anda memeriksa akaun e-mel yang dihantarnya e-mel itu, dan ketahui bahawa beberapa sistem e-mel sekolah menyekat e-mel dari alamat e-mel bukan sekolah.

Sekiranya anda mempunyai e-mel tetapan semula kata laluan tetapi kata laluan tidak diterima, pastikan anda menggunakan e-mel tetapan semula kata laluan yang paling baru: kadang-kadang orang akan menekan butang dua kali, dan hanya kata laluan kedua yang akan berfungsi.

Pastikan anda menyalin-menampal kata laluan untuk tidak mendapat ruang di luar, atau jika anda menaip, ingatlah bahawa peka huruf besar dan huruf kecil L boleh kelihatan seperti nombor 1, dll.

Anda boleh membatalkan langganan dari halaman 'Akaun Saya', yang boleh anda akses menggunakan bar navigasi di bahagian atas semasa anda log masuk.

Wakil sokongan tidak boleh membatalkan langganan bagi pihak anda.

Apabila anda menekan butang 'Susun', algoritma kami akan cuba menyusun semua perkataan anda di grid, dan akan menggerakkan kata-kata di sekitarnya agar sesuai dengan perkataan yang paling banyak.

Ini akan mendapat semua perkataan di grid sekitar 90% masa, bergantung pada senarai perkataan. Untuk 10% yang lain, anda akan mendapat amaran yang menjelaskan bahawa kata-kata yang tidak sesuai telah ditambahkan ke pad calar.

Teka-teki besar tidak akan dapat dicetak pada satu halaman & # 8212 petunjuk dan grid adalah yang terkecil yang dapat kami jadikannya dan tetap dapat dibaca oleh semua orang.

Walaupun begitu, penyemak imbas yang berbeza mencetak dengan cara yang sedikit berbeza, jadi anda boleh mencuba menggunakan 'pratonton cetak' menggunakan penyemak imbas yang berbeza (atau cuba butang PDF) untuk melihat apakah anda menyukai penampilan yang lebih baik.

Kami secara amnya bertindak balas terhadap semua masalah yang dilaporkan dalam sehari. Sekiranya sudah beberapa hari dan anda tidak mendapat maklum balas daripada kami, mungkin kami telah menghantar e-mel yang tidak menghubungi anda.

Periksa folder spam anda, dan ketahui bahawa beberapa sistem e-mel sekolah menyekat e-mel dari alamat e-mel bukan sekolah. Cuba berikan alamat e-mel lain jika anda rasa e-mel kami kepada anda disekat.


Masalah perkataan sederhana

Tuliskan persamaan yang menerangkan situasi dunia nyata berikut secara matematik:

Mohato dan Lindiwe sama-sama mengalami selesema. Mohato bersin dua kali untuk setiap bersin Lindiwe's. Sekiranya Lindiwe bersin (x ) kali, tulis persamaan yang menerangkan berapa kali mereka berdua bersin.

Perbezaan dua nombor adalah ( teks <10> ) dan jumlah petak mereka adalah ( teks <50> ). Cari dua nombor tersebut.

Liboko membina stor segi empat tepat. Sekiranya pepenjuru ruangan adalah ( sqrt < text <1 & # 160312 >> ) & # 160 ( teks) dan perimeternya adalah ( teks <80> ) ( teks), tentukan dimensi bilik.

Hujan begitu banyak hujan pada bulan Julai seperti bulan Disember. Sekiranya hujan (y ) & # 160mm pada bulan Julai, tulis ungkapan yang menunjukkan hujan pada bulan Julai dan Disember.

Zane dapat melukis bilik dalam ( teks <4> ) jam. Tlali boleh melukis bilik dalam ( teks <2> ) jam. Berapa lama masa mereka berdua untuk melukis bilik bersama?

( teks <25> ) tahun yang lalu, Arthur berusia ( teks <5> ) tahun lebih dari sepertiga usia Bongani. Hari ini, Bongani berumur ( teks <26> ) tahun kurang dari dua kali usia Arthur. Berapakah umur Bongani?

Produk dua bilangan bulat adalah ( text <95> ). Cari bilangan bulat jika jumlahnya adalah ( teks <24> ).


11.5: Ungkapan, Persamaan dan Ketaksamaan

Tekan Butang Mula Untuk Bermula

Anda mempunyai 0 betul dan 0 tidak betul.

Ini betul 0 peratus.

Menilai Ekspresi: Berlatih

Nilaikan menggunakan nilai yang diberikan.

Tekan Butang Mula Untuk Bermula

Anda mempunyai 0 betul dan 0 tidak betul.

Ini betul 0 peratus.

Persamaan: Berlatih

Selesaikan untuk x dengan mengelak.

Tekan Butang Mula Untuk Bermula

Anda mempunyai 0 betul dan 0 tidak betul.

Ini betul 0 peratus.

Persamaan: Berlatih

Selesaikan untuk x.

Tekan Butang Mula Untuk Bermula

Anda mempunyai 0 betul dan 0 tidak betul.

Ini betul 0 peratus.

Persamaan: Berlatih

Selesaikan untuk x.

Tekan Butang Mula Untuk Bermula

Anda mempunyai 0 betul dan 0 tidak betul.

Ini betul 0 peratus.

Persamaan: Berlatih

Selesaikan untuk x.

Tekan Butang Mula Untuk Bermula

Anda mempunyai 0 betul dan 0 tidak betul.

Ini betul 0 peratus.

Persamaan: Berlatih

Selesaikan untuk x.

Tekan Butang Mula Untuk Bermula

Anda mempunyai 0 betul dan 0 tidak betul.

Ini betul 0 peratus.

Persamaan: Berlatih

Selesaikan untuk x.

Catatan: klik butang ketaksamaan untuk menukar arah ketaksamaan.

Tekan Butang Mula Untuk Bermula

Anda mempunyai 0 betul dan 0 tidak betul.

Ini betul 0 peratus.

Hasil Kuiz Anda:

Maklumat Ringkasan

Anda tidak betul.

Untuk menghantar e-mel hasil anda, lancarkan versi yang sesuai untuk pencetak, batalkan dialog cetak, dan salin-tempel hasilnya ke editor e-mel kegemaran anda.


KumpulkanEdNY

Algebra Tools: Ungkapan, Persamaan, dan Ketaksamaan (Bahagian 1) terdapat di pautan di atas. Bahagian 2 terdapat di sini.

Paket ini memberikan pengenalan kepada algebra melalui ungkapan dengan nombor, ungkapan dengan pemboleh ubah, dan prinsip penting keseimbangan dalam persamaan. Pelajar terlebih dahulu akan menyelesaikan pemboleh ubah menggunakan kuasa dua dan objek sebagai simbol dan akhirnya akan menggunakan huruf sebagai pemboleh ubah. Dalam prosesnya, mereka akan belajar bagaimana menggunakan urutan operasi dan sifat pendaraban pendaraban untuk membuat dan menilai ekspresi. Di Bahagian 2, pelajar akan belajar menyelesaikan persamaan algebra yang lebih rumit dan akan diperkenalkan kepada sistem persamaan dan ketaksamaan.

Sekiranya anda menggunakan bahan-bahan ini dengan pelajar anda, sila beri kami maklum balas mengenai pengalaman (tinjauan guru, tinjauan pelajar). Maklum balas anda mengenai paket akan membantu kami meningkatkan bahan dan menyokong kejayaan & # 8217 pelajar kami

Versi PDF yang boleh dimuat turun di sini merangkumi pembetulan pada versi sebelumnya. Sebaiknya periksa halaman ini secara berkala untuk melihat apakah ada kemas kini versi.

Paket Math Fast GRASP Math disediakan untuk guru yang bekerjasama dengan pelajar dalam pembelajaran jarak jauh, kelas Fast Track Math, dan kelas tradisional ABE / HSE. Paket tersebut memberikan latihan dalam bidang topik keutamaan tinggi pada TASC dengan mengembangkan konsep yang mendasari sebagai pengenalan kepada setiap topik. Pelajar kemudian diberi latihan mengaplikasikan apa yang telah dipelajari mengikut konteks. Pelajar bekerja melalui soalan gaya TASC diikuti dengan panduan mengenai kemahiran mengambil ujian dan penjelasan reka bentuk pilihan jawapan. Akhirnya, bahagian pilihan mengenai bahasa topik matematik disediakan. Kami berharap bahagian ini berguna untuk semua pelajar, tetapi sangat berguna untuk pelajar peringkat rendah dan Pelajar Bahasa Inggeris. (Klik di sini untuk maklumat lebih lanjut mengenai Paket Matematik yang lain.)

Terima kasih!
Eric Appleton & amp Mark Trushkowsky (Program Kesaksamaan Dewasa / Persamaan Sekolah Menengah CUNY)

Sekiranya anda mempunyai pertanyaan mengenai pentadbiran Program Jalur Cepat atau Program Pembelajaran Jarak Jauh GRASP, sila hubungi Rosemary Matt, Pengarah Akauntabiliti NYS di [email protected]

Nota: Paket GRASP Math Fast Track menggunakan lesen Creative Commons dari Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), yang bermaksud bahawa ia boleh dikongsi, disalin dan diedarkan semula dalam bentuk apa pun, selagi dokumen tersebut mengekalkan atribusi kepada NYSED dan CUNY untuk ciptaan mereka.

Paket Math GRASP Fast Track dimungkinkan melalui sokongan dari Jabatan Pendidikan Negeri New York, Pejabat Kerjaya Dewasa dan Perkhidmatan Pendidikan Berterusan.


Tonton videonya: PERSAMAAN DAN PERTIDAKSAMAAN LINEAR SATU VARIABEL EDISI 2016 Contoh Soal Pertidaksamaan (Oktober 2021).